Scientific update on COVID-19

Updated on April 19th 2021
Redaction committee

Boris Lacarra – AP-HP Robert Debré
F-Xavier Lescure – Inserm, AP-HP Bichat, COREB
Guillaume Mellon – AP-HP Bichat, COREB
Inmaculada Ortega Perez – ANRS|Maladies infectieuses émergentes
Eric D’Ortenzio – ANRS|Maladies infectieuses émergentes, Inserm, AP-HP
Erica Telford – Inserm

Reviewing committee

Jean-Marc Chapplain – CHU Rennes, COREB
Flavie Chatel – COREB
Hélène Coignard – HCL, COREB
Dominique Costagliola – Inserm
Marie-Paule Kieny – Inserm
Quentin Le Hingrat – Inserm, AP-HP Bichat

Jean-Christophe Lucet – Inserm, AP-HP Bichat
Claire Madelaine – ANRS|Maladies infectieuses émergentes
Matthieu Mahevas – Inserm, AP-HP Henri-Mondor
Emmanuelle Vidal Petiot – Inserm, AP-HP Bichat
Benoit Visseaux – Inserm, AP-HP Bichat
Question:
- What are the types of vaccines in clinical evaluation?
- Which are the results of immunogenicity safety and efficacy of SARS CoV-2 vaccines?
- May they protect against arising viral variants?
- Is there any security issues related to authorised vaccines
• **Vaccines aims:** expose the immune system to an antigen that won’t cause disease, provoke an immune response (able to block/kill the virus)

• **Eight types of vaccines:**
 - virus (inactivated, weakened),
 - viral vector (replicating, non replicating)
 - nucleic acid (DNA, RNA)
 - protein based (protein subunit, virus like particles)

Callaway E. *Nature* Apr 2020
Vaccines

• **R&D landscape**: WHO lists 184 candidates in preclinical development, 85 candidate vaccines in clinical evaluation (April 5th 2021); update available at:

https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines

4 vaccines abandoned after trials: MSD-IAVI, MSD-Pasteur, Imperial College, University of Queensland
Phase III/IV COVID-19 Vaccines (April 19th 2021)

<table>
<thead>
<tr>
<th>Developer</th>
<th>Vaccine Platform</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioNTech – Pfizer – Fosun Pharma</td>
<td>RNA</td>
<td>BNT162b2*: Lipid nanoparticle-formulated, nucleoside modified mRNA vaccine encoding full-length spike (S) protein</td>
</tr>
<tr>
<td>Moderna – NIAID</td>
<td>RNA</td>
<td>mRNA-1273: Lipid nanoparticle encapsulated, mRNA vaccine encoding pre fusion spike (S) protein</td>
</tr>
<tr>
<td>CureVac</td>
<td>RNA</td>
<td>CVnCoV: Lipid nanoparticle encapsulated, mRNA (non modified) vaccine encoding pre fusion spike (S) protein</td>
</tr>
<tr>
<td>Inovio-IVI</td>
<td>DNA</td>
<td>INO-4800: DNA plasmid vaccine with electroporation</td>
</tr>
<tr>
<td>Osaka University-Takara Bio</td>
<td>DNA</td>
<td>AG0302-COVID19: DNA plasmid vaccine + Adjuvant</td>
</tr>
<tr>
<td>CanSino Biologicals Inc – Beijing Institute of Biotechnology</td>
<td>Non replicating viral vector</td>
<td>Ad5-nCoV: Replication-deficient Ad5 vector containing optimised full-length spike (S) protein</td>
</tr>
<tr>
<td>Gamaleya Research Institute</td>
<td>Non replicating viral vector</td>
<td>Spoutnik V: Recombinant Ad26 (prime) and recombinant Ad5 (boost) viruses expressing the gene for spike (S) protein</td>
</tr>
<tr>
<td>Janssen Pharmaceutical Companies – Beth Israel Deaconness Medical Center</td>
<td>Non replicating viral vector</td>
<td>Ad26COV51: Recombinant adenovirus vaccine (Ad26) incorporating SARS-CoV-2 full stabilized Spike (S) protein</td>
</tr>
<tr>
<td>University of Oxford – AstraZeneca</td>
<td>Non replicating viral vector</td>
<td>AZD1222: Replication-deficient simian adenovirus (ChAdOx1) vector containing codon-optimised spike (S) protein</td>
</tr>
<tr>
<td>Developer</td>
<td>Vaccine Platform</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>ReiThera - Univercells</td>
<td>Non replicating viral vector</td>
<td>GRAd-CoV2.S: replication defective Simian adenovirus (GRAsd) encoding SARS COV 2 S protein</td>
</tr>
<tr>
<td>Novavax</td>
<td>Protein subunit</td>
<td>NVX-COV2373: Recombinant nanoparticle vaccine consisting of full-length spike (S) protein, with or without Matrix-M1 adjuvant</td>
</tr>
<tr>
<td>Medicago Inc</td>
<td>Protein subunit</td>
<td>CoVLP: Plant-derived VLP adjuvanted with AS03</td>
</tr>
<tr>
<td>Anhui Zhifei Logcom Biopharmaceutical- Chinese Academy of Sciences</td>
<td>Protein subunit</td>
<td>ZF2001: Adjuvanted recombinant protein (RBD-Dimer) expressed in CHO cells</td>
</tr>
<tr>
<td>Clover – GSK– Dynavax</td>
<td>Protein subunit</td>
<td>SCB-2019: Native like trimeric subunit Spike Protein (AS03 or CpG1018 plus alum adjuvanted)</td>
</tr>
<tr>
<td>Covaxx University of Nebraska</td>
<td>Protein subunit</td>
<td>UB-6212: Multiepitope peptide based S1-RBD protein based vaccine</td>
</tr>
<tr>
<td>Center for genetic engineering and Biotcehnology</td>
<td>Protein subunit</td>
<td>CIGB-66: RBD+aluminium hydroxide</td>
</tr>
<tr>
<td>Instituto Finlay de Vacunas</td>
<td>Protein subunit</td>
<td>FINLAY-FR-2/Soberana2: Anti-SARS CoV 2 (RBD chemically conjugated to tetanus toxoid)+adjuvant</td>
</tr>
<tr>
<td>Sanofi Pasteur</td>
<td>Protein subunit</td>
<td>VAT00002: Anti-SARS CoV 2 (S)+adjuvant</td>
</tr>
<tr>
<td>Vector Institute</td>
<td>Protein subunit</td>
<td>EpiVacCorona: peptide based vaccine for COVID19 prevention</td>
</tr>
</tbody>
</table>

- **FDA approved**
- **EMA approved**
- **Approved by other national regulatory agencies**
<table>
<thead>
<tr>
<th>Developer</th>
<th>Vaccine Platform</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinovac – Institute Butantan</td>
<td>Inactivated</td>
<td>CoronaVac: β-propiolactone inactivated vaccine administered with aluminium hydroxide adjuvant</td>
</tr>
<tr>
<td>Beijing Institute of Biological Products – Sinophram</td>
<td>Inactivated</td>
<td>BBIBP-CorV: β-propiolactone inactivated vaccine administered with aluminium hydroxide adjuvant</td>
</tr>
<tr>
<td>Wuhan Institute of Biological products– Sinopharm</td>
<td>Inactivated</td>
<td>SARS-CoV-2 Vaccine: β-propiolactone inactivated vaccine adsorbed to 0.5-mg aluminum</td>
</tr>
<tr>
<td>Bharat Biotech- ICMR- National Institute of Virology</td>
<td>Inactivated</td>
<td>COVAXIN: whole-virion inactivated vaccine</td>
</tr>
<tr>
<td>Research Institute for Biological Safety Problems</td>
<td>Inactivated</td>
<td>QazCovid-in: Inactivated vaccine</td>
</tr>
<tr>
<td>Institute of Medical Biology Chine Academy of Medical Sciences</td>
<td>Inactivated</td>
<td>Inactivated Vaccine</td>
</tr>
<tr>
<td>Shifa Pharmed</td>
<td>Inactivated</td>
<td>Inactivated Vaccine</td>
</tr>
</tbody>
</table>
BioNTech/Pfizer

Phase I: NCT04368728

Study Design:
- Phase I randomized controlled, dose-finding trial

Age range:
- 18 – 55 or 65 – 85

Nb of participants: 195

Nb of doses/route: 2 (days 1/21) - IM

Vaccine groups:
- 10 μg BNT162b2 (S) 18–55y (n = 12)
- 20 μg BNT162b2 (S) 18–55y (n = 12)
- 30 μg BNT162b2 (S) 18–55y (n = 12)
- 10 μg BNT162b2 (S) 65–85y (n = 12)
- 20 μg BNT162b2 (S) 65–85y (n = 12)
- 30 μg BNT162b2 (S) 65–85y (n = 12)
+ BNT162b1 (not used in Phase III)

SAE: None

Local AE: Injection site pain, swelling

Systemic AE: Headache, fatigue, chills, muscle pain, fever, joint pain, diarrhoea

Assay: Luminex immunoassay

Units: Geometric mean concentration, U/mL (95% CI)

Antigen-binding IgG and virus-neutralizing responses to vaccination with 10 μg to 30 μg of BNT162b2 **boosted by the second dose** in both the younger adults and the older adults (lower antigen-binding IgG in elderly group)

Walsh EE et al. NEJM Oct 2020
IMMUNOGENICITY 2/2

2. Neutralizing responses
Assay: SARS-CoV-2 virus neutralisation test (mNeonGreen reporter strain), 50% inhibitory dilution
Units: Geometric mean response, ID50 (95% CI)

The 50% neutralizing at the 30-μg dose level on day 28 or day 35 ranged from 1.7 to 4.6 times the GMT of the convalescent serum panel among participants 18 to 55 years of age and from 1.1 to 2.2 times the GMT of the convalescent serum panel among those 65 to 85 years of age.
mRNA 1273

IMMUNOGENICITY AND SAFETY DATA

Moderna-NIH

Phase I: [NCT04283461](https://clinicaltrials.gov/ct2/show/NCT04283461)

Study Design
Phase I open-label, non-randomised, dose-finding trial

Age range
18 – 55

Nb of participants
45

Nb of doses/route
2 (days 1/29)-IM

Vaccine groups
- 25 μg (n = 15)
- 100 μg (n = 15)
- 250 μg (n = 15)

SAE
None

Local AE
Injection site pain (67–100% at ds1, 77–100% at ds 2)

Systemic AE
- Headache (20–47% at ds1, 23–100% at ds2), myalgia (7–27% at ds1, 23–93% at ds2), chills (8–86% at ds2), fatigue (27–33% at ds1, 39–80% at ds2), fever (0–57% at ds2), nausea (0–47% at ds 2)

Assay:
GMHI* assay to spike protein in trial participants.

Units:
Geometric mean titre (95% CI)

Binding antibody IgG geometric mean titers (GMTs) to S protein:
Seroconversion in all participants by day 15.

A recent study shows that mRNA 1273 vaccine induces specific IgG responses and NAbs in adults older than 70 years of age. (Anderson EJ, NEJM 2020)

Jackson LA et al. NEJM. Jul 2020
IMMUNOGENICITY 2/2

2. Neutralizing responses
 Assay: Plaque-reduction neutralization test (80% inhibitory dilution)
 Units: Geometric mean response, ID80 (95% CI)

At day 43, wild-type virus–neutralizing activity capable of reducing SARS-CoV-2 infectivity by 80% or more (PRNT_{80}) detected in all participants, with geometric mean PRNT_{80} responses of 339.7 (95% CI, 184.0 to 627.1) in the 25-μg group and 654.3 (95% CI, 460.1 to 930.5) in the 100-μg group.

3. Cellular responses: 25-μg and 100-μg doses elicit CD4 T-cell responses biased toward expression of Th1 cytokines (TNFα > IL2 > IFNγ).
AstraZeneca-Oxford University Phase II: NCT04400838

Study Design	Phase II randomised controlled trial

Age range | 1: 18–55; 2: 56–69; 3: ≥70

Nb of participants | 560

Nb of doses/route | 1 (day 0) or 2 (days 0/28) - IM

Vaccine groups | 18–55y: 2 x low dose (n = 50) 18–55y: 2 x std dose (n = 50) 56–69y: 1 x low dose (n = 30) 56–69y: 1 x std dose (n = 30) 56–69y: 2 x low dose (n = 30) 56–69y: 2 x std dose (n = 30) ≥70y: 1 x low dose (n = 50) ≥70y: 1 x std dose (n = 50) ≥70y: 2 x low dose (n = 50) ≥70y: 2 x std dose (n = 50)

Control group | MenACWY (n = 534)

SAE | 13 serious adverse events have occurred none of which are considered related to either study vaccine as assessed by the investigators (Ph III trial suspended and resumed in Sep 2020 due to 2 cases of transverse myelitis among participants, found not to be related to vaccination)

Local AE | Tenderness, injection site pain; reported for participants who received 2 doses of vaccine; adverse events were less frequent in older adults (≥56y)

Systemic AE | Fatigue, headache, muscle ache, malaise, feverish, chills, joint pain; reported for participants who received 2 doses of vaccine; adverse events were less frequent in older adults (≥56y)

IMMUNOGENICITY 1/2

1. SARS-CoV-2 IgG response to spike protein

Assay: ELISA
Units: GMT (95% CI)

Total IgGs against the Spike protein were similar in all age groups regardless the dose. Responses at day 28 decreased with increasing age (low: 18–55 years, median 6439[AU]/mL; 56–69 years, 4553 AU/mL; ≥70 years, 3565 AU/mL. Std: 18–55 years, median 9807 AU/mL; 56–69 years, 5496 AU/mL; ≥70 years, 4156 AU/mL)

Ramasamy MN et al. Lancet Nov 2020
IMMUNOGENICITY 2/2

2. Live SARS-CoV-2 microneutralisation assay (MNA$_{80}$)
 Assay: Microneutralisation test (80% inhibitory dilution) tion
 Units: Median titre, ID80 (IQR)

Neutralizing antibody responses: Median titres peaked by day 42 in groups receiving two vaccinations.

There are no significant differences in normalized titers between age groups at day 42 (low: 18–55 years, median 161; 56–69 years, 143; ≥70 years, 150. Std: 18–55 years, median 193; 56–69 years, 144; and ≥70 years, 161.

3. Induction of T cell responses and increase of IFN-γ expression
 IFN-γ ELISpot responses against SARS-CoV-2 spike protein peaked 14 days after the prime vaccination
IMMUNOGENICITY 1/2

1. SARS-CoV-2 RBD-specific IgGs

Assay: ELISA
Units: Geometric mean titre (95% CI)

Antibody responses detected from day 14 for both products and in all vaccine administration schemes. At day 21 RBD-specific IgGs were detected in 100% of vaccinated participants. ([GMT] 1629 with the frozen formulation and 951 with the lyophilized one). Heterologous boosting with rAd5-S led to an increase in SARS-CoV-2 RBD specific IgG titres; 7 days after boost.
IMMUNOGENICITY 2/2

2. Neutralizing responses

Assay: Microneutralisation assay (50% inhibitory dilution, Vero E6 cells)
Units: Geometric mean titre, ID50 (95% CI)

Administration of both rAd26-S and rAd5-2 led to production of neutralizing antibodies in 100% of participants, whereas administration of only rAd26-S led to a lower seroconversion rate.

3. T cell response: induction of CD4+ and CD8+ cells and an increase in the concentration of interferon-\(\gamma\) secretion.
Adenoviral vector vaccine

Janssen Pharmaceuticals Phase I/IIa: NCT04436276

Study Design
Phase I/IIa randomised controlled trial

Age range
18 – 55; ≥65

Nb of participants
805

Nb of doses/route
1 (day 1) or 2 (day 1 and 57); IM

Vaccine groups
- 18–55y : low dose at d1/57 (n = 75)
- 18–55y : low dose at d1 (n = 75)
- 18–55y : high dose at d1/57 (n = 75)
- 18–55y : high dose at d1 (n = 75)
- 18–55y : low dose at d1 (n = 5)
- 18–55y : high dose at d1 (n = 5)
- ≥65y : low dose at d1/57 (n = 75)
- ≥65y : low dose at d1 (n = 75)
- ≥65y : high dose at d1/57 (n = 75)
- ≥65y : high dose at d1 (n = 75)

SAE
1 SAE, participant recovered within 24h

Local AE
Injection site pain

Systemic AE
Fatigue, headache, myalgia, pyrexia (fever), nausea

Spike protein and neutralizing responses

A single dose of Ad26.COV2.S elicited a strong humoral response, with the presence of S-binding and neutralizing antibodies in more than 90% of the participants, regardless of either age group or vaccine dose.

At day 71 after the first dose, antibody titers further increased and stabilized.

Sadoff J et al.; NEJM 2020, Jan 2021
NOVAVAX

Study Design
Phase I randomised controlled, dose-finding trial

Age range
18 – 59

Nb of participants
131

Nb of doses/route
1 (day 0) or 2 (days 0/21) - IM

| Vaccine groups | |
|----------------|--|---|
| 2 x 25 μg (n = 25) | |
| 2 x 5 μg + 50 μg Matrix-M1 (n = 28) | |
| 2 x 25 μg + 50 μg Matrix-M1 (n = 28) | |
| 1 x 25 μg + 50 μg Matrix-M1 (n = 25) | |
| 2 x 5 μg and 2 x 25 μg included 3 sentinel participants who were vaccinated in an open-label manner and observed for reactogenicity | |

Control group: 0.9% saline placebo (n = 25)

SAE
None

Local AE
Tenderness (20–65% at ds1, 12–81% at ds2), injection site pain (24–54% at ds1, 8–63% at ds 2)

Systemic AE
Headache (23–40% at dose 1, 28–58% at dose 2), muscle pain/myalgia (12–32% at dose 1, 8–54% at dose 2), fatigue (16–40% at dose 1, 12–50% at dose 2), malaise (4–28% at dose 1, 8–38% at dose 2), joint pain (4–27% at dose 2)

IMMUNOGENICITY 1/2

1. SARS-CoV-2 Anti-Spike IgGs

Assay: ELISA

Units: Geometric mean titre (95% CI)

By day 21 after 1st vaccination, IgG specific responses occurred for all adjuvant regimens (**10-fold of non adjuvant**). IgGs concentrations **further increased after 2nd dose** vaccination (day 29 and day 35)

Keech C et al. NEJM. Sep 2020
IMMUNOGENICITY 2/2

2. Neutralizing responses

Assay: Microneutralisation assay (99% inhibitory dilution, Vero E6 cells)
Units: Geometric mean titre, ID99 (95% CI)

Two doses of adjuvant vaccine induced an increase on the concentration of neutralizing antibodies more than 100 times greater than single vaccinations without adjuvant.

3. Induction of T-cell responses: antigen-specific induction of CD4+ T-cell responses A strong bias toward this Th1 phenotype observed
Vaccine Summary results on immunogenicity

<table>
<thead>
<tr>
<th>Vaccine & Developer</th>
<th>Phase III regimen</th>
<th>Specific IgG titers (14 - 28 days after 2nd dose) as per Phase I or II published results</th>
<th>NAb titers (14 - 28 days after 2nd dose) as per Phase I or II published results</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNT162b2 BioNTech – Pfizer – Fosun Pharma</td>
<td>2 doses (d1 and d22) 30µg/dose</td>
<td>8147 GMT Test: Luminex anti S1 IgG</td>
<td>163 GMT Test: wtVNA<sub>50</sub></td>
</tr>
<tr>
<td>mRNA-1273 Moderna – NIAID</td>
<td>2 doses (d1 and d29) 100µg/dose</td>
<td>782 719 GMT Test: ELISA anti S IgG</td>
<td>654.3 GMT Test: PRNT<sub>80</sub></td>
</tr>
<tr>
<td>Ad5-nCoV CanSino Biologics Inc – Beijing Institute of Biotechnology</td>
<td>1 dose 5x10<sup>10</sup> vp</td>
<td>571.0 GMT Test: ELISA anti RBD IgG</td>
<td>18.3 GMT Test: WT virus neutralization</td>
</tr>
<tr>
<td>SputnikV Gamaleya Research Institute</td>
<td>d1 0,5 mL rAd26 d21 0,5 mL rAd5</td>
<td>14 703 GMT Test: ELISA anti RBD IgG</td>
<td>49.25 GMT Test: MNA<sub>50</sub></td>
</tr>
<tr>
<td>Ad26COV51 Janssen Pharmaceutical Companies Bethesda Israel Deaconness Medical Center</td>
<td>1 dose 5x10<sup>10</sup> vp</td>
<td>478 GMC Test: ELISA anti S IgG</td>
<td>224 GMT Test: MNA<sub>50</sub></td>
</tr>
<tr>
<td>ChAdOx1 nCoV-19 University of Oxford – AstraZeneca</td>
<td>2 doses (d1 and d29) 5x10<sup>10</sup> vp</td>
<td>639 EU Test: ELISA anti S IgG</td>
<td>136 MT Test: MNA<sub>80</sub></td>
</tr>
<tr>
<td>NVX COV2373 Novavax</td>
<td>2 doses (d0 and d28) 25µg+Matrix M/ dose</td>
<td>47 521 GMEU Test: ELISA anti S IgG</td>
<td>330S GMT Test: MNA<sub>99</sub></td>
</tr>
<tr>
<td>CoronaVac Sinovac – Institute Butantan</td>
<td>2 doses (d1 and d14)</td>
<td>1094,3 GMT Test: ELISA anti RBD IgG Test: Micro cytotoxic effect assay</td>
<td>27,6 GMT</td>
</tr>
<tr>
<td>BBIBP-CorV Beijing Inst. Biological Products – Sinopharm</td>
<td>2 doses (d1 and d14)</td>
<td>Not reported</td>
<td>219,9 GMT Test: MNA<sub>50</sub></td>
</tr>
<tr>
<td>SARS-CoV-2 Vaccine Wuhan Inst. Biological products – Sinopharm</td>
<td>2 doses (d0 and d21)</td>
<td>215 GMT Test: ELISA anti S IgG</td>
<td>247 GMT Test: PRNT<sub>50</sub></td>
</tr>
</tbody>
</table>

NOTE:

COMPARISONS SHOULD NOT BE MADE AS ASSAYS ARE NOT STANDARDIZED
Efficacy Trial Map (April 19th 2021)

Adapted from LSHTM COVID19 vaccine tracker [https://vac.lshtm.shinyapps.io/ncov_vaccine_landscape/]
VACCINE EFFICACY DATA

First data regarding vaccine efficacy has been made public by the means of **PRESS RELEASES** by pharmaceutical companies.

<table>
<thead>
<tr>
<th>Date of Press release</th>
<th>Company</th>
<th>Vaccine</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 9th 2020</td>
<td>BioNTech/Pfizer</td>
<td>BNT162b2</td>
<td>1st interim analysis; 28 days after 1st dose 94 confirmed cases of COVID19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• > 90% Efficacy</td>
</tr>
<tr>
<td>November 11th 2020</td>
<td>Gamaleya</td>
<td>Sputnik V</td>
<td>1st interim analysis; 21 days after 1st dose 20 confirmed cases of COVID19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• > 92% Efficacy</td>
</tr>
<tr>
<td>November 16th 2020</td>
<td>Moderna</td>
<td>mRNA 1273</td>
<td>1st interim analysis; 42 days after 1st dose 95 confirmed cases of COVID19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 94.5% Efficacy</td>
</tr>
<tr>
<td>November 18th 2020</td>
<td>BioNTech/Pfizer</td>
<td>BNT162b2</td>
<td>Final analysis; 28 days after 1st dose 170 confirmed cases of COVID19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 95% Efficacy</td>
</tr>
<tr>
<td>November 23rd 2020</td>
<td>AstraZeneca/Oxford</td>
<td>AZD1222</td>
<td>1st interim analysis 14 days after 2nd dose 131 confirmed cases of COVID19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 90% Efficacy when given as half dose/full dose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 62% Efficacy when given as full dose/full dose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Overall 70% efficacy</td>
</tr>
<tr>
<td>November 24th 2020</td>
<td>Gamaleya</td>
<td>Sputnik V</td>
<td>2nd interim analysis; 42 days after 1st dose 39 confirmed cases of COVID19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10 severe)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 95% Efficacy</td>
</tr>
<tr>
<td>November 30th 2020</td>
<td>Moderna</td>
<td>mRNA 1273</td>
<td>Final analysis; 42 days after 1st dose 196 confirmed cases of COVID19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(30 severe)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 94.1% Efficacy</td>
</tr>
</tbody>
</table>
First data regarding vaccine efficacy has been made public by the means of **PRESS RELEASES** by pharmaceutical companies.

<table>
<thead>
<tr>
<th>Date of press release</th>
<th>Company</th>
<th>Vaccine</th>
<th>Analysis</th>
</tr>
</thead>
</table>
| January 28\(^{th}\) 2021 | NOVAVAX | NVX-COV2373 | 1\(^{st}\) interim analysis; Onset of COVID 7 days after 2\(^{nd}\) dose 28 days after 1\(^{st}\) dose (one dose vaccine) 62 confirmed cases of COVID19 (56 on the placebo group)
• Efficacy by strain was calculated to be **95.6% against the original COVID-19 strain** and **85.6% against the UK variant strain** |
| January 29\(^{th}\) 2021 | Janssen | Ad26COVS1 | 1\(^{st}\) interim analysis 28 days after vaccination (one dose) Etude multinational ENSEMBLE.
• **72% Effective** in the US and **66% Effective** Overall at Preventing Moderate to Severe COVID-19
• **85% Effective** overall in preventing severe disease.
• **Complete protection** against COVID-19 related Hospitalisation and Death
• Protection against the SARS-CoV-2 Variant from the B.1.351 Lineage Observed in South Africa |
| February 2\(^{nd}\) 2021 | Sinovac | CoronaVac | 1st interim analysis; 14 days after 2nd dose vaccination 253 confirmed cases of COVID19
Efficacy rate against diseases caused by COVID-19 for:
• all cases: **50.65%**
• cases requiring **medical treatment**: 83.70%
hospitalized, severe and fatal cases: **100%**
Efficacy by strain:
• **85.6% against the UK variant strain** |
• Efficacy data from ongoing double blind, randomized phase III trial across Argentina, Brazil, South Africa and USA (43,548 participants randomized 1:1)

• Two 30 µg doses of BNT162b2 vaccine, 21 days apart

• **Inclusion criteria:** healthy adults or stable chronic medical conditions, including HIV, HBV or HCV aged of 16y or more.

• **Exclusion criteria:** medical history of Covid-19, treatment with immunosuppressive therapy, or diagnosis with an immunocompromising condition

• **Primary efficacy** endpoint: efficacy of BNT162b2 against confirmed Covid-19 with onset at least 7 days after the second dose

• **Primary safety** end points: solicited, specific local or systemic adverse events and use of antipyretic or pain medication within 7 days after the receipt of each dose
The BNT162b2 vaccine is reactogenic, but the side effects remain acceptable in all populations studied.

The short-term safety profile of the BNT162b2 vaccine is characterized by mild to moderate pain at the injection site, fatigue and headache. These manifestations disappear after 24 to 48 hours.

The only grade 3 adverse events with a frequency greater than 2% after the second vaccine administration are fatigue (97/2405 participants; 4.6%) and headache (7/2015; 3.2%).

No grade 4 adverse side effects observed.

Six deaths were reported during the clinical trials, including four in the placebo group, but no relation with vaccination was found.

Limits:
Just 2 month follow up safety data
Data for over 75 is scarce and absent for children, pregnant women or immunocompromised
TOTAL OF CASES: 170
- 8 in the BNT162b2 group/162 in the Control
- 10 severe cases, 9 within the Placebo group
Vaccine efficacy: 95%

Limits:
Efficacy measured in symptomatic patients
No evidence of an potential effect against viral shedding

Protection occurs as early as the second week after the first vaccine administration, with an increase of protection level up to 95% after the second administration
Sera of BNT162b2 vaccinated subjects tested against lab generated VSV pseudovirus bearing B.1.1.7 SARS CoV2 mutations

Description of tested sera:
- 40 participants from Phase I
 - 26 younger (23-55 years of age)
 - 14 older (57-73 years of age)
- 7 or 21 days after booster immunization

The 50% neutralization GMT of the sera against the SARS-CoV-2 lineage B.1.1.7 pseudovirus were slightly, statistically significantly reduced compared to the GMTs against the Wuhan reference pseudovirus.

The largely preserved neutralization of pseudoviruses bearing the B.1.1.7 spike by BNT162b2-immune sera makes it unlikely that the UK variant virus will escape BNT162b2-mediated protection.

Limitation of the work: use of a non-replicating pseudovirus system.
Efficacy data from Phase III blinded, randomized, controlled trials at 99 US sites

- 2 doses of 100 µg of mRNA 1273 or placebo 28 days apart
 - 30,420 participants randomized (1:1)
 - >96% received 2nd dose

Inclusion criteria: healthy adults aged of 18y or more with no history of SARS CoV 2 and high risk of severe COVID19

Primary endpoint: efficacy of the mRNA-1273 vaccine in preventing a first occurrence of symptomatic Covid-19 with onset at least 14 days after the second injection (virologically confirmed, symptomatic COVID-19: positive swab combined with at least two qualifying symptom)

Secondary end point: efficacy of mRNA-1273 in the prevention of severe Covid-19

Safety assessments: monitoring of solicited local and systemic adverse events for 7 days after each injection; unsolicited adverse reactions for 28 days after each injection

Table 1. Demographic and Clinical Characteristics at Baseline.*
mRNA 1273

- **Solicited adverse events at the injection site**: more frequent in the mRNA-1273 group after both the 1st (84.2%, vs. 19.8%) and the 2nd dose (88.6%, vs. 18.8%). Mainly grade 1 or 2
- **Solicited systemic adverse events**: more often in the mRNA-1273 group after both the 1st (54.9%, vs. 42.2%) and the 2nd dose (79.4%, vs. 36.5%). Increase proportions of grade 2 and 3 events after 2nd Dose (from 16.5% vs 38.1% and from 2.9% to 15.8%).
- Both solicited injection-site and systemic adverse events were more common among younger participants (18 to <65y) than among older participants (≥65 y)
- The frequency of unsolicited adverse events, unsolicited severe adverse events, and serious adverse events 28 days after injection similar among age groups
- **Hypersensitivity reactions** reported in 1.5% and 1.1% of participants in the vaccine and placebo groups. 3 **Bell’s palsy** in the vaccine group and 1 in the placebo group
- 5 deaths, including 3 in the mRNA 1273 group with no link to vaccine

Key limitations: short duration of safety and efficacy follow-up
mRNA 1273

EFFICACY AND SAFETY DATA

TOTAL OF CASES: 196
- 11 in the mRNA 1273 group / 185 in the placebo group
- 30 severe cases all within the placebo group

Vaccine efficacy: 94.1% (100% protection against severe cases)

data not sufficient to assess asymptomatic infection

Limits: Efficacy tested in a setting of national recommendations for masking and social distancing, which may have translated into lower levels of infectious inoculum.

Baden LR et al. NEJM Dec 2020
Serum neutralizing activity against recombinant vesicular stomatitis virus (rVSV)–based SARS-CoV-2 bearing the spike protein from the original Wuhan-Hu-1 isolate, the D614G variant, the B.1.1.7 and B.1.351 variants

Description of tested sera: participants from Phase I trial of the mRNA-1273 vaccine, 7 days after second dose

Full panel of mutations and a subset of mutations affecting the RBD of the B.1.1.7 variant had no significant effect on neutralization by serum from vaccinated patients

Decrease in titers of neutralizing antibodies against the B.1.351 variant and a subset of its mutations affecting the RBD.
AZD1222

- Efficacy data from ongoing blinded, randomized, controlled trials across UK and Brazil
 - **COV 002:** Phase II/III study in UK. Two dosage groups:
 - LD/SD: prime $2,2 \times 10^{10}$ vp; boost 5×10^{10} vp at 28 days
 - SD/SD: prime 5×10^{10} vp; boost 5×10^{10} vp at 28 days
 - **COV 003:** Phase III study in Brazil. Dosage:
 - SD/SD: prime/boost $3.5–6.5 \times 10^{10}$ vp up to 12 weeks apart (target 4 weeks)

- **Inclusion criteria:** healthy adults aged of 18y or more.
 - **COV 002:** healthy adults
 - **COV 003:** healthy and stable pre-existing health conditions individuals

- **Main outcome:** virologically confirmed, symptomatic COVID-19 (positive swab combined with at least one qualifying symptom)

- The interim efficacy is assessed by combining data from COV002 and COV003

Efficacy and Safety Data

<table>
<thead>
<tr>
<th>Age, year</th>
<th>COV002 (UK, LD/SD, N=2744)</th>
<th>COV001 (UK SD/SD, N=810)</th>
<th>COV003 (Brazil, all SD/SD, N=4088)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18–55</td>
<td>ChAdOx1 nCoV-19</td>
<td>MenACWY</td>
<td>ChAdOx1 nCoV-19 plus saline</td>
</tr>
<tr>
<td>50–69</td>
<td>1267 (30.0%)</td>
<td>1234 (30.0%)</td>
<td>1279 (30.0%)</td>
</tr>
<tr>
<td>70+</td>
<td>0</td>
<td>0</td>
<td>285 (13.0%)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>263 (12.3%)</td>
</tr>
<tr>
<td>Female</td>
<td>886 (64.8%)</td>
<td>835 (66.0%)</td>
<td>1333 (66.1%)</td>
</tr>
<tr>
<td>Male</td>
<td>481 (35.2%)</td>
<td>379 (34.0%)</td>
<td>599 (33.9%)</td>
</tr>
<tr>
<td>BMI range</td>
<td>25.2 (16.8–28.7)</td>
<td>22.3 (20.7–28.0)</td>
<td>36.6 (22.3–32.3)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td>33.6 (22.3–32.3)</td>
</tr>
<tr>
<td>White</td>
<td>2157 (92.1%)</td>
<td>2123 (90.6%)</td>
<td>2316 (91.8%)</td>
</tr>
<tr>
<td>Black</td>
<td>6 (0.4%)</td>
<td>7 (0.3%)</td>
<td>24 (1.0%)</td>
</tr>
<tr>
<td>Asian</td>
<td>75 (5.9%)</td>
<td>137 (6.3%)</td>
<td>138 (8.7%)</td>
</tr>
<tr>
<td>Mixed</td>
<td>23 (1.4%)</td>
<td>10 (0.5%)</td>
<td>18 (3.5%)</td>
</tr>
<tr>
<td>Other</td>
<td>6 (0.7%)</td>
<td>8 (0.4%)</td>
<td>13 (1.6%)</td>
</tr>
<tr>
<td>Health and social care setting workers</td>
<td>1233 (56.4%)</td>
<td>1263 (61.3%)</td>
<td>1513 (67.8%)</td>
</tr>
<tr>
<td>Comorbidities</td>
<td>Cardiovascular disease</td>
<td>Respiratory disease</td>
<td>Diabetes</td>
</tr>
</tbody>
</table>
| | 204 (7.6%) | 176 (7.7%) | 121 (5.9%)

Limits:
- Immunocompromised volunteers not included in the trial
- Elderly participants are low represented
- Heterogeneity between trials (concentration and schedule)
Efficacy and Safety Data

Primary Efficacy Analysis: 2 weeks after second dose

- **98 cases in the SD/SD group (2 trials)**
 - 27 within the ChAdOx1 nCov19 group
 - 71 within the Control group
 - **Vaccine Efficacy in SD/SD: 62.1%**

- **33 cases in the LD/SD group**
 - 3 within the ChAdOx1 nCov19 group
 - 33 within the Control group
 - **Vaccine Efficacy in LD/SD: 90%**

TOTAL OF CASES: 131

- 30 in the ChAdOx1 nCov /101 in the Control

Vaccine efficacy: 70.4%

Limits:

Is aggregation of SD/LD and SD/SD data for efficacy analysis possible? (different doses, different vaccination schedules schedules)

Table 2. Efficacy against SARS-CoV-2 more than 14 days after a second dose of ChAdOx1 nCov19 vaccine in the primary efficacy population

<table>
<thead>
<tr>
<th>Case Group</th>
<th>Total Number of Cases</th>
<th>Incidence Rate per 1000 Person-years (person-days of follow-up)</th>
<th>Vaccine Efficacy (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD/SD</td>
<td>131</td>
<td>30/5807 (0.5%)</td>
<td>104/5029 (2.0%)</td>
</tr>
<tr>
<td>LD/SD</td>
<td>86</td>
<td>33/1208 (0.3%)</td>
<td>33/1207 (0.3%)</td>
</tr>
<tr>
<td>SD/SD</td>
<td>52</td>
<td>7/2407 (0.4%)</td>
<td>56/2406 (3.6%)</td>
</tr>
<tr>
<td>LD/SD</td>
<td>45</td>
<td>7/2727 (0.3%)</td>
<td>27/2727 (1.0%)</td>
</tr>
<tr>
<td>Other non-primary symptomatic COVID-19 disease</td>
<td>17</td>
<td>2/2486 (0.1%)</td>
<td>11/2486 (0.4%)</td>
</tr>
<tr>
<td>Any symptomatic COVID-19 disease</td>
<td>149</td>
<td>37/5807 (0.6%)</td>
<td>12/5807 (0.2%)</td>
</tr>
<tr>
<td>Asymptomatic or symptoms unknown (COVID-2019)</td>
<td>65</td>
<td>9/3285 (0.3%)</td>
<td>6/3285 (0.2%)</td>
</tr>
<tr>
<td>LD/SD recipients</td>
<td>74</td>
<td>7/1129 (0.6%)</td>
<td>41/1129 (3.7%)</td>
</tr>
<tr>
<td>SD/SD recipients</td>
<td>45</td>
<td>22/1207 (2.0%)</td>
<td>7/1207 (0.6%)</td>
</tr>
<tr>
<td>Any ILI-negative death</td>
<td>221</td>
<td>68/5807 (0.3%)</td>
<td>108/5807 (1.9%)</td>
</tr>
</tbody>
</table>
Primary Efficacy Analysis at more than 21 days after second dose

From 21 days after the first dose: there were ten cases hospitalized for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death.

Limits: No evidence of an potential effect against viral shedding.
Efficacy of AZD1222 vaccine against SARS-CoV-2 VOC 202012/01 (B.1.1.7)

Population: Volunteers enrolled in the phase 2/3 vaccine efficacy studies in the UK (>18)

Methods: Upper airway swabs on a weekly basis and if symptoms of COVID-19 disease. NAAT for SARS-CoV-2 sequencing if positive

Efficacy analysis included symptomatic COVID-19 in seronegative participants with a NAAT positive swab more than 14 days after a second dose of vaccine

Primary outcome: symptomatic COVID-19 disease, defined as a positive NAAT from upper airway swab in a participant with at least one symptom, including cough, fever of 37.8°C or higher, shortness of breath, anosmia, or ageusia

TOTAL OF CASES: 520
- 21 caused by B.1.1.7 variant in the vaccinated group;
- 54 caused by B.1.1.7 variant in the control group

Vaccine efficacy against B1.351: 61.7%

<table>
<thead>
<tr>
<th>Cases*</th>
<th>ChAdOx1 nCoV-19 vaccine (n=4244)</th>
<th>Control vaccine (n=4290)</th>
<th>Efficacy (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary symptomatic COVID-19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.1.17</td>
<td>57 (19%)</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>Other variants</td>
<td>95 (36%)</td>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>No sequence result†</td>
<td>30 (11%)</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Not sequenced†</td>
<td>92 (34%)</td>
<td>27</td>
<td>65</td>
</tr>
<tr>
<td>Total cases</td>
<td>266</td>
<td>59</td>
<td>210</td>
</tr>
<tr>
<td>Asymptomatic or unknown infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.1.17</td>
<td>19 (6%)</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Other variants</td>
<td>34 (16%)</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>No sequence result†</td>
<td>64 (31%)</td>
<td>36</td>
<td>28</td>
</tr>
<tr>
<td>Not sequenced†</td>
<td>92 (44%)</td>
<td>45</td>
<td>47</td>
</tr>
<tr>
<td>Total cases</td>
<td>209</td>
<td>97</td>
<td>112</td>
</tr>
<tr>
<td>Any NAAT positive infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.1.17</td>
<td>75 (14%)</td>
<td>21</td>
<td>54</td>
</tr>
<tr>
<td>Other variants</td>
<td>144 (28%)</td>
<td>27</td>
<td>117</td>
</tr>
<tr>
<td>No sequence result†</td>
<td>101 (19%)</td>
<td>44</td>
<td>57</td>
</tr>
<tr>
<td>Not sequenced†</td>
<td>206 (38%)</td>
<td>81</td>
<td>119</td>
</tr>
<tr>
<td>Total cases</td>
<td>520</td>
<td>171</td>
<td>347</td>
</tr>
</tbody>
</table>

Data include S0, S1, and L0/S0 seronegative efficacy cohorts only. NAAT = nucleic acid amplification test. SD = standard dose. ID = low dose. *Data in this column are n (%) or n (n). †Not available sequence obtained or unprocessed due to cycle threshold >30. ‡Sample did not enter sequencing pipeline, was destroyed, or sequencing results are yet to be obtained. §Includes primary symptomatic cases, non-primary symptomatic cases (those with other symptoms such as nausea or diarrhea, not shown separately), asymptomatic cases, and cases for which symptoms were unknown.

Table: Vaccine efficacy against B1.1.7 and non-B1.1.7 variants

Emary KRW, et al. The Lancet March 2021
The viral load among NAAT-positive swab in the AZD 1222 vaccinated group was statistically significantly lower than among those who were in the control group.

> vaccinees showing a NAAT-positive swab could be less likely to transmit the virus than an unvaccinated NAAT
Population: Volunteers enrolled in the phase 2 trial in South Africa (>18, HIV-)

Methods: Serum samples obtained from 25 participants after the second dose were tested by pseudovirus and live-virus neutralization assays against the original D614G virus and the B.1.351 variant.

Primary endpoints: Safety and efficacy of the vaccine against laboratory-confirmed symptomatic cases more than 14 days after the second dose.

TOTAL OF CASES 42
39 cases caused by B.1.351 variant;
Vaccine efficacy against B1.351: 10.4% (95% CI, −76.8 to 54.8).

Madhi, S.A. et al. NEJM. April 2021
• Sputnik vaccine comprises two vector components, rAd26-S and rAd5-S.
• Efficacy data from Phase III blinded, randomized, controlled trials at 25 sites in Moscow-Russia
• 2 doses of 10^{11} recombinant vp each at 21 d interval (d26 first, Ad5 later)
 • 21 977 participants randomized (3:1)
 • >90% received 2nd dose
• Inclusion criteria: healthy adults aged of 18y negative for HIV, Hepatitis B and C and no history of SARS CoV 2

Primary outcome: proportion of participants with COVID-19 confirmed by PCR from day 21 after receiving the first dose

Secondary outcomes: end point: severity of COVID-19; changes in antibody levels against SARS-CoV-2 glycoprotein S; proportion of participants with antibodies against SARS-CoV-2 N-protein; changes in SARS-CoV-2 neutralising antibody titres; changes in antigen-specific cellular immunity level; and incidence and severity of adverse events
Sputnik V

Adenoviral vector vaccine

Primary Efficacy Analysis

<table>
<thead>
<tr>
<th>Total cases</th>
<th>Vaccine group (confirmed cases)</th>
<th>Placebo group (confirmed cases)</th>
<th>Vaccine efficacy (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>First COVID-19 occurrence from 21 days after dose 1<sup>1</sup></td>
<td>Overall 78</td>
<td>16/14 964 (0.1%)</td>
<td>62/4902 (1.3%)</td>
<td>91.6% (85.6-95.2)</td>
</tr>
<tr>
<td>Age group (years)</td>
<td>18-30</td>
<td>5</td>
<td>1/2536 (0.0%)</td>
<td>4/521 (0.8%)</td>
</tr>
<tr>
<td></td>
<td>31-40</td>
<td>17</td>
<td>4/3848 (0.1%)</td>
<td>13/1259 (1.0%)</td>
</tr>
<tr>
<td></td>
<td>41-50</td>
<td>19</td>
<td>4/4399 (0.1%)</td>
<td>15/1444 (1.0%)</td>
</tr>
<tr>
<td></td>
<td>51-60</td>
<td>27</td>
<td>5/2510 (0.2%)</td>
<td>22/1146 (1.9%)</td>
</tr>
<tr>
<td></td>
<td>>60</td>
<td>10</td>
<td>2/1611 (0.1%)</td>
<td>8/533 (1.5%)</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>22</td>
<td>9/5821 (0.2%)</td>
<td>22/1887 (1.2%)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>46</td>
<td>7/9143 (0.1%)</td>
<td>39/3015 (1.3%)</td>
</tr>
<tr>
<td>Moderate or severe cases</td>
<td>20</td>
<td>0/14 964</td>
<td>20/4902 (0.4%)</td>
<td>100% (94.4-100.0)</td>
</tr>
</tbody>
</table>

TOTAL OF CASES: confirmed cases 78
- 16 in the vaccinated group
- 62 in the placebo
- 20 moderate of severe cases all in the placebo
- 4 deaths unrelated to vaccine

Vaccine efficacy: 91.6%

* (greater than 87% for all studied groups including >60)

SAFETY:

- Most of the reported adverse events (7485 [94.0%] of 7966) were grade 1; 451 were grade 2 (5.66%) and 30 were grade 3 (0.38%) (*flu-like illness, injection site reactions, headache, and asthenia*).
- 122 rare adverse events (91 in the vaccine group and 31 in the placebo group)
- 70 episodes of serious adverse events, considered not related to COVID-19 (68 participants, 45 from the vaccine group and 23 from the placebo group)

From 21 days after the first dose of vaccine (the day of dose 2)
• **Presence of IgGs** specific to RBD 42 days from the start of vaccination
 - In the vaccine group: detected in 336 (98%) of 342 samples, with a GMT of 8996 (95% CI 7610–10 635). Seroconversion rate: 98.25%.
 - In the placebo group: detected in 17 (15%) of 114 samples, with a GMT of 30.55 (20.18–46.26), and a seroconversion rate of 14.91%
 - 18–30 years group had a significantly higher GMT than the other age groups
• **Presence of neutralizing antibodies** on day 42 after first vaccination
 - In vaccine group: GMT of 44.5 (95% CI 31.8–62.2) and the seroconversion level was 95.83%
 - In the placebo group: GMT 1.6 (1.12–2.19) and the seroconversion rate was 7.14%
• All participants in the vaccine group had significantly higher levels of IFN-γ secretion upon antigen stimulation
Effectiveness of SARS-CoV-2 vaccination: Real Life Data

Mass vaccination campaigns against COVID19 in Israel

- **Estimated vaccine effectiveness:**
 - 7 days after the second dose: 92% for documented infection, 94% for symptomatic Covid-19, 87% for hospitalization, and 92% for severe Covid-19

 - During days 14 through 20 and days 21 through 27: 46% and 60% for documented infection, 57% and 66% for symptomatic Covid-19, 74% and 78% for hospitalization, 62% and 80% for severe Covid-19, and 72% and 84% for Covid-19–related death, respectively

- **BNT162b2 vaccine is effective for a wide range of Covid-19–related outcomes**

Table 3. Estimated Vaccine Effectiveness against COVID-19 Outcomes during Three Time Periods.

<table>
<thead>
<tr>
<th>Period</th>
<th>Documented Infection</th>
<th>Symptomatic Illness</th>
<th>Hospitalization</th>
<th>Severe Disease</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 to 21 days after first dose</td>
<td>% (95% CI)</td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>1.2% (0.8-2.2)</td>
<td>1.5% (1.2-1.9)</td>
<td>3.8% (1.6-6.3)</td>
<td>0.1% (0-0.3)</td>
<td>0.6% (0-1.5)</td>
</tr>
<tr>
<td>Vaccinated</td>
<td>0.0% (0-0.4)</td>
<td>0.2% (0-0.5)</td>
<td>0.7% (0.1-1.5)</td>
<td>0.2% (0-0.9)</td>
<td>0.5% (0-1.3)</td>
</tr>
<tr>
<td>Risk Difference</td>
<td>1.2% (0.8-2.2)</td>
<td>1.5% (1.2-1.9)</td>
<td>3.8% (1.6-6.3)</td>
<td>0.1% (0-0.3)</td>
<td>0.6% (0-1.5)</td>
</tr>
</tbody>
</table>

Confidence intervals were estimated using the percentile bootstrap method with 500 repetitions. Estimates were calculated only for cells with more than 10 instances of an outcome among the two groups. NA denotes not available, and RR risk ratio.

Dagan, N., et al. NEJM. April 15 2021
Effectiveness of SARS-CoV-2 vaccination: Real Life Data

Israel (BNT162b2 mRNA)

<table>
<thead>
<tr>
<th>Week since First Dose</th>
<th>Received a First Dose of Vaccine†</th>
<th>HCWs Tested at HHUMC</th>
<th>HCWs Tested at HHUMC or Community Clinics‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no./1000 workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 1</td>
<td>5297</td>
<td>32.1</td>
<td>9.4</td>
</tr>
<tr>
<td>Week 2</td>
<td>5247</td>
<td>32.9</td>
<td>9.0</td>
</tr>
<tr>
<td>Week 3</td>
<td>5200</td>
<td>19.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Week 4</td>
<td>5164</td>
<td>16.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Received second dose</td>
<td>4864</td>
<td>11.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Did not receive second dose</td>
<td>300</td>
<td>51.3</td>
<td>13.3</td>
</tr>
<tr>
<td>Week 5</td>
<td>5050</td>
<td>4.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Received second dose</td>
<td>4934</td>
<td>4.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Did not receive second dose</td>
<td>116</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Week 6</td>
<td>4947</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>Received second dose</td>
<td>4793</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>Did not receive second dose</td>
<td>154</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Week 7</td>
<td>4079</td>
<td>19.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Received second dose</td>
<td>4069</td>
<td>19.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Did not receive second dose</td>
<td>30</td>
<td>0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Decrease number of positive test result among vaccineted HCW.

Efficacy of these vaccines is maintained outside the trial settings.

Suggest that widespread and effective vaccination among health care workers provides a safe environment.

California (mRNA 1273 & BNT162b2 mRNA)

<table>
<thead>
<tr>
<th>Days after Vaccination</th>
<th>Vaccinated Persons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With New Infection (N = 379)</td>
</tr>
<tr>
<td></td>
<td>number</td>
</tr>
<tr>
<td>Dose 1</td>
<td>Days 1–7</td>
</tr>
<tr>
<td></td>
<td>Days 8–14</td>
</tr>
<tr>
<td></td>
<td>Days 15–21</td>
</tr>
<tr>
<td></td>
<td>Day 22 or later, before dose 2</td>
</tr>
<tr>
<td>Dose 2</td>
<td>Days 1–7</td>
</tr>
<tr>
<td></td>
<td>Days 8–14</td>
</tr>
<tr>
<td></td>
<td>Day 15 or later</td>
</tr>
</tbody>
</table>
SARS-CoV-2 viral load after BNT162b2 vaccine: Real Life data

Effect of vaccination on viral load in COVID-19 post-vaccination infections?

Retrospective study – December 21, 2020 to February 11, 2021

Analyse the RT–qPCR test measurements of three SARS-CoV-2 genes, from positive post-vaccination tests (4938 patients) → analysis of the infection cycle threshold (Ct).

Decrease viral load after 12d post-vaccination

Ct values of positive samples collected 12–37 d after were higher than the Ct values of positive samples taken during the first 11 d after vaccination.

Ct values of positive sample of vaccinated patients versus Ct values of positive tests of unvaccinated patients.

A difference of 1 Ct unit is approximately equivalent to a factor of 2 in the number of viral particles per sample, These Ct differences represent a decrease of 2.8–4.5-fold in viral load in vaccinated individuals

→ Infection occurring 12 d or longer after vaccination have significantly reduced viral loads.
→ affecting viral shedding and contagiousness?

Coefficient for the association of Ct of the RdRp gene with vaccination at different vaccination-to-sample time bins in comparison to unvaccinated patients.

Safety of SARS-CoV-2 vaccination: Real Life data

Thrombotic Thrombocytopenia after AZ1222 Vaccination

- Vaccination with ChAdOx1 nCov-19 can result in the rare development of immune thrombotic thrombocytopenia
- This can be mediated by platelet activating antibodies against PF4, which clinically mimics autoimmune heparin-induced thrombocytopenia.

Norway cases:

- five patients with venous thrombosis and thrombocytopenia 7 to 10 days after receiving the first dose of the AZ1222 vaccine (32 to 54 years)
- Four of the patients had severe cerebral venous thrombosis with intracranial hemorrhage, and the outcome was fatal in three.

Germany and Austria cases:

- 11 patients (9 women). Median age of 36 years (22 to 49).
- 10 patients with one or more thrombotic events beginning 5 to 16 days after vaccination
- 1 patients with fatal intracranial hemorrhage

A case report Thrombotic Thrombocytopenia after Ad26.COV2.S Vaccination

Muir, KL., et al. NEJM April 2021

Nina H. Schultz et al NEJM April 2021

Table 3: Clinical and Laboratory Summary of 11 Patients with Available Clinical Information

<table>
<thead>
<tr>
<th>Variable</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelet (x 10^3/µl)</td>
<td>13,000</td>
<td>107,000</td>
<td>60,000</td>
<td>8,000</td>
<td>13,000</td>
<td>75,000</td>
<td>29,000</td>
<td>16,000</td>
<td>13,000</td>
<td>8,000</td>
</tr>
<tr>
<td>CTV</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Splanchic-vein thrombosis</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Other thromboses</td>
<td>Australian</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Widespread necrosis (brain, lungs, liver)</td>
<td>No</td>
</tr>
<tr>
<td>Multiple organ thrombosis</td>
<td>No</td>
</tr>
<tr>
<td>Condylar (calvarium)</td>
<td>No</td>
</tr>
</tbody>
</table>

Greinacher, A., et al. NEJM April 2021

A case report Thrombotic Thrombocytopenia after Ad26.COV2.S Vaccination

Muir, KL., et al. NEJM April 2021
Antibody Responses in Seropositive Persons after a Single Dose of SARS-CoV-2 mRNA Vaccines

- A single dose of mRNA vaccine (either BNT162b2 or mRNA 1273) elicited rapid immune responses in seropositive participants, with postvaccination antibody titers similar to or exceeded titers found in seronegative participants who received two vaccinations.

- Post-vaccine symptoms were more prominent for those with prior infection after the first dose, but symptomology was similar between groups after the second dose.
Vaccination of particular populations

Population: pregnant (n=84; 13 deliveries); lactating (n=31); or non-pregnant woman of reproductive age (18-45) (n=16)

Type of COVID-19 vaccine received: (BNT162b2 Pfizer/BioNTech or mRNA-1273 Moderna/NIH)

- Mean gestational age at 1st dose: 23.2 weeks
- 13% vaccinated at 1st trimester (1st dose)
- 46% vaccinated at 2nd trimester (1st dose)
- 40% vaccinated at 3rd trimester (1st dose)

Sampling: Blood and breastmilk collected at: V0 (at the time of first dose), V1 (at the time of second vaccine dose) V2 (2-6 weeks following the 2nd dose) and at delivery. Umbilical cord blood was also collected at delivery

SAFETY: low cumulative symptoms score with no significant differences between groups

MATERNAL VACCINE RESPONSE: significant rise of both S and RBD specific IgGs and IgAs from V0 to V2. Higher levels of SARS-CoV-2 antibodies were observed in all 268 vaccinated women compared to pregnant women with natural infection.
Vaccination of particular populations

BREASTMILK ANTIBODY TRANSFER

- Anti-S specific antibodies were found in maternal breastmilk.
- Spike and RBD-specific IgG were detectable in 10/10 umbilical cords after maternal vaccination
- NAb titers tending to be lower in umbilical cord than maternal serum
SARS-CoV-2–Specific Antibodies in Breast Milk After COVID-19 Vaccination of Breastfeeding Women

Population: Eighty-four women receiving 2 doses of BNT162b2; 504 breast milk samples

- Anti–SARS-CoV-2-specific IgA antibodies in the breast milk increased rapidly and were significantly elevated at 2 weeks after the first vaccine.
- Mean levels remained elevated for the duration of follow-up, and at week six, 65.7% of samples tested positive.
- Anti–SARS-CoV-2-specific IgG antibodies remained low for the first 3 weeks, with an increase at week 4
Cumulative vaccination doses administered (April 1st 2021)
Testing and implementation status of front-running candidates
VACCINES (April 19th 2020)

- 88 vaccine candidates are in an ongoing clinical evaluation. 11 have received authorisation from national or international medicine agencies.
- Published Phase I/II data suggests that vaccine candidates on trial are immunogenic and mostly well tolerated in young adults. Data is emerging on elderly, globally keeping the trend described in young adults.
- Induced titers of NAb are variable depending on the vaccine candidate. Comparison of NAb titers among vaccines is not possible. Yet, emerging data suggest that NAb are likely to be considered as protection correlates.
- Published data do not show increased risk of ADE in vaccinees.
- Overall vaccines efficacy results are good and rang between 50% and 95% depending on the vaccine studies with mRNA vaccines performing the best.
- COVID19 patients elicit strong Humoral responses after one doses of mRNA vaccines.
- SARS COV 2 variants represent a challenge for current vaccines with preliminary results showing and variable level of cross-reaction depending on the viral strain.
References

References

References

Financial time vaccine tracker:
https://ig.ft.com/coronavirus-vaccine-tracker/?areas=gbr&areas= isr&areas= usa&areas= eue&cumulative=1&populationAdjusted=1
Contacts

Dr. Guillaume Mellon
guillaume.mellon@aphp.fr

Dr Eric D’Ortenzio
eric.dortenzio@inserm.fr